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ABSTRACT

A derivation is presented of the equation governing the pressure In
a thin, flat film of ideal gas under isothermal conditions, when the
surfaces bounding the film are In relative normal and tangential
motion. When tangential motion is absent, the preswure equation
reduces to a nonlinear heat equation , which admits of very few
closed-form solutions. Various approximation methods are discussed,
and two problems involving small periodic variation of the gap be-
tween parallel plates are solved by perturbation method for a film in
which fluid Inertia is negligible.
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ISOTHERMAL SQUEEZE FILMS

INTRODUCTION

Because of its wide technological application, the theory of fluid

film lubrication between surfaces in relative lateral motion has been

extensively studied since its formulation by Osborne Reynolds

almost eighty years ago. The recent development of air-lubricated

bearings has stimulated the extension of the theory to the case of

compressible lubricating films.

Less attention has been given to the pressure generated in a

fluid film by relative normal motion of the surfaces. Most of the

published work on this subject has been confined to the study of

incompressible films between parallel surfaces and in journal

bearings [ij . Gas squeeze films, as they are called, have remained,

for the most part, a curiosity.

The purpose of this paper is to derive and apply the equation

governing the pressure in a thin, flat film of ideal gas, under iso-

thermal conditions, when the surfaces bounding the film are in relative

normal motion.

In a recent paper, ElrodJ derived the equation governing the

In th1
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steady-state pressure in a journal bearing lubricated by an incom-

pressible fluid with constant viscosity. Although such derivations

are usually carried out with the help of several ad hoc order-of-

magnitude assumptions, Elrod used a perturbation approach, with

the ratio of film thickness to bearing length as the small parameter.

This approach not only allowed him to derive Reynold's lubrication

equation in a more convincing manner, but also enabled him to retain

the terms resulting from the film curvature. Elrod found that the

Reynolds equation, with the first order correction for film curvature

included, can be written

in which

D = Shaft diameter,

h = film thickness,

P = fluid pressure,

v = shaft surface velocity,

x = distance around shaft in direction of rotation,

z distance parallel to shaft axis,

)= fluid viscosity.

Elrod's result led a reviewer (3] to conclude that only the film

curvature, and not the fluid inertia, has an influence in the
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approximation of the second order. However, the importance of

inertia depends upon the film Reynolds number, which does not appear

in Elrod's result. His dimensionless formulation is aimed at deter-

mining the effect of film geometry, not the effect of film dynamics.

By way of example, his normalized pressure 1? is defined by

where p is the lubricant density and ho is a typical value of the film

thickness. Since the pressure in a journal bearing film varies

according to he- 2 , this formulation is quite adequate for Elrod's

purposes. However, to represent properly the dependence of

pressure on the parameters of the fluid, as predicted by lubrication

theory, it is correct to use

which differs from Elrod's lrprecisely by the factor pUD1 /--

a Reynolds number. That inertia effects are negligible is, then, a

tacit assumption made by Elrod, rather than a conclusion to be

drawn from his results.

In Sec. I of the present paper, we use an approach quite similar

to Elrod's in order to derive the equation governing the pressure in

a thin film when both lateral and relative normal motions of the
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surfaces are present. We consider only flat films: i. e. , although

the surfaces bounding the film may be curved, it is possible to choose

a plane such that the distance from any point in the film to the plane

is small compared with the lateral dimensions of the film. The analy-

sis does, however, apply to journal bearings, subject to curvature

corrections of the type derived by Elrod. We assume that the deusity

of the lubricant is proportional to its pressure, a condition which is

met when the lubricant is an ideal gas and isothermal conditions

obtain. Although fluid inertia is usually negligible in lubricating

films, we do not assume this a priori. Rather, we derive criteria

under which inertia can validly be neglected, and indicate a method

of procedure which can be followed when these criteria are not met.

In Sec. II, we introduce the restriction that lateral motion be

absent, and thereafter consider only pure squeeze films.

A few exact solutions to the squeeze-film equation are presented

in Sec. III. In Sec. IV, we consider limiting forms of the squeeze-

film equation at high and low frequency of the squeeze motion. We

find, in particular, that at low frequencies, the pressure in an iso-

thermal squeeze film is governed, to first approximation, by the

incompressible squeeze-film equation.

In Sec. V, we calculate the pressure field generated by small

periodic variation of the gap between infinitely long parallel plates,

and in Sec. VI, we treat the equivalent axisymmetric problem.
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The methods of analysis of Secs. V and VI can be readily

adapted to other classes of problems in squeeze-film theory. The

treatment of films bounded by surfaces other than parallel flat plates

is more complicated, but not conceptually more difficult. Also, cases

involving both lateral motion and squeeze motion can sometimes be

solved by analogous methods. Current research in the IBM General

Products Division San Jose laboratories includes problems in each of

these categories.

W. A. Michael, of this laboratory, has developed an alternate

approach to the solution of problems in gas squeeze-film theory. This

approach, in which the pressure is written as a Fourier series in the

spatial variables with time -dependent coefficients, has been used by

Michael to study rectangular squeeze films. His report, currently in

preparation, includes solutions both for periodic motion and for the

transient response to a sudden variation of the film thickness.
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I. THE MATHEMATICAL FOUNDATIONS OF ISOTHERMAL
GAS-FILM THEORY

Assume that a thin, continuous film of ideal gas is contained

between the surfaces

-y /4 x , . 1)

where x1, x 2 , x 3 are right-handed Cartesian coordinates and t is

time. The film thickness h, defined by

= '41(X X_.i) - .6x (1.3)

is positive for all values of xI, xZ, t; the surfaces move

relative to the ambient gas with velocity components V, , V"'

The surfaces bounding the film may be either rigid or flexible,

but are assumed continuous. At each point of each surface,

three components of velocity provide one degree of freedom too many,

and must therefore be related through a kinematic constraint. With

the convention that Latin indices extend over the values 1, 2, and

Greek indices over 1, 2, 3, the kinematic constraints are

d c dg s(1 
.4 )

repeated indices denoting summation.
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The motion of the gas in the film is governed by the equations

of viscous hydrodynamics. The viscosity coefficientst/ and

are assumed constant, since, within the range of interest of gas

lubrication theory, their variation is slight. As a consequence, we

can write the Navier-Stokes equation

in which 1 and /& denote, respectively, the density and pressure

of the gas, and D/Dtdenotes material differentiation:

The gas also obeys the continuity equation

'8 + ')C j• J4( = 01.8)

where the dilation d is defined by

S'(1. D_91

Thus, Eq. (1. 6) can also be written

Since the film thickness is small compared with the bearing

breadth B, the hydrodynamic equations can be simplified by using

e=h/ (1.11l)



as a perturbation parameter, where ho is a typical value of the film

thickness. Using the technique employed by Elrod -j to study curved

incompressible films, we introduce a dimensionless coordinate system

that "stretches" the coordinate normal to the film:

Z .3 ADj0 k~& X- (1.&

The X = 1, 2 components of Eq. (I. 10) then become

Jxij P V1 J.(1.14)
SRIDv

and the $ 3 component becomes

We now introduce dimensionless variables in such a way that the

magnitude of each term in the equations of motion is represented by

its coefficient, bearing in mind that we intend to apply the equations

to a lubricating film.

For the time scale, we choose the reciprocal of a typical fre-

quencyW of the squeeze component of surface motion. Thus, we

assume

V= V V3 m W (1. 16)
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where W and W1 are dimensionless velocities of order unity, and

introduce a dimensionless time T, defined by

T= wt. (1.17)

To be consistent with Eq. (1. 16), we let

vS-- ho •• I 8

The scale of the lateral velocity components is not necessarily

related to the scale of the squeeze component. While it is true that

the squeeze motion forces gas outward or sucks it inward, at a char-

acteristic velocity tj B, there is also a contribution to the lateral

velocity arising from the lateral motion of the bearing surfaces. It

is always possible to choose an instantaneous orientation of the coordi-

nate system such that the components of surface motion in the xl and x2

directions are of the same order. We shall assume that the time variation

of these components is sufficiently slow that the same orientation can

always be used. Thus, we introduce a reference velocity V such that

V \V/u, &VL. (1. 19)

where the dimensionless velocities Ui, U are of order unity. To

account for both contributions to the lateral velocity of the fluid, we

let

(. B + V) (I. ZO)

and expect the (Ji to be of order unity.
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In terms of our dimensionless quantities, the constraints (1.4)

and (1.5) become, respectively,

V wi4 (1. 22)

in which

H/4 J~ ~ //$ (1. 23)

The factor V/IWB implicit in Eqs. (1. 21) and (1.22) provides a measure

of the relative magnitude of the two reciprocal times characteristic

of the bearing kinematics: V/B represents a shear rate character-

istic of the lateral motion; 6.) , as defined above, is a typical frequency

of the squeeze motion.

We now turn our attention to the definition of a dimensionless

pressure. The theory of lubrication for incompressible films, which

provides at least a limiting description of gas films, shows that, in

the absence of squeeze motion, the pressure in the interior of a film

varies according toj ,/J V/D}( 'For pure squeeze films (lateral motion

absent), the variation is as/ COe-. Therefore, when lateral and

squeeze motions are both present, we may find useful the normaliza-

tion

S', ',.+V/8) 6, (1.2,4)
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where i-ris of order unity except near the bearing periphery.

Normalizing the density with respect to its ambient value 4

P.(1.2)

In isothermal films, however, the density is proportional to the

pressure, so that

p~ (,~/~JF. .,(1.26)

where Pa is the ambient pressure. Equation (1. 24) therefore entails

p, ,,, ) + V//)67r (1.27)

and Eq. (1.25) yields the usual pressure normalization of gas lubri-

cation theory:

P r/J. (1.28)

However, it is IF, not necessarily P, which is of order unity in the

interior of the film.

The dilational stress,(•-/4)Ai can be expressed

/V

where

are dimensionless quantities. Near the bearing periphery, where
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steep gradients of pressure obtain, GS and1L may be quite large.

In the interior of the film, however, they will normally be of order

unity. An obvious exception occurs when the bearing undergoes

lateral vibration at a frequency large compared withiV. In a step

bearing, * OS and eL may be large in the neighborhood of the step.

Bothjs andOL are likely not to be of order unity in the vicinity of

a source, unless we consider only the completely viscous film in

which fluid inertia is negligible.

We now introduce modified Reynolds numbers corresponding,

respectively, to the squeeze motion and to the lateral motion:

~ ~ ~D,/B~e. .(1.31)

In terms of the dimensionless quantities introduced above, the

equationsof motion (1. 14) for the lateral velocity components become

- au;/I -- _*(ZQT+-,/4 _ R,'L _ _ t1JX

L +x .,lyL 2j. .
(I- + (i+ S/ V) .

(1.32)

Equation (1. 15), for the normal velocity component, becomes

Although we have been considering only films with continuous

bounding surfaces, piecewise continous surfaces can be treated

in an obvious manner.
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S- {" I•wl• 4/J /- Cw/•T+ wjw/j2
0 •+ V/ w_-B

(1.33)

Equation (1.33) implies that, with neglect only of terms of the

second degree or higher in E, the pressure is constant across the

film. This conclusion, of course, does not necessarily apply near

the periphery of the bearing or in other regions where one or both of

the dimensionless dilational stresses$s, OL become large (of order

6 ).Moreover, either PRS or PRL could be of order C In this

unlikely case also, the pressure may vary significantly across the

film. In most cases of interest, however, it is correct to infer from

Eq. (1. 33) that ý7r/)Z vanishes throughout the interior of the film,

and we shall proceed on the assumption that this is the case. Con-

vistent with this assumption is the reduction of Eq. (1. 32) to

In most bearing applications, the Reynolds numbers are negli-

gibly small, but for the present we need not assume this is so. In

view of Eqs. (1. 19), (1. 20) and (1.23), the dimensionless velocity

components satisfy the boundary conditions
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(-+ w.S/V)

(1.35)
Z:Pt (i USIV)

Since Tr, and consequently P, are assumed constant across the

film, Eq. (1.34) and the boundary conditions (1. 35) taken together are

equivalent to the integro -differential equation

t,.--~~ -/.- ((z ,..f1V -
/ ~ ~ ~ ~ V H z/1(-)

-4

which (1.36)

(1.37)

Equation (1. 36) represents a preliminary result to which we shall

return presently. For the moment, however, let us consider again

the continuity equation (1. 8). In terms of the original (dimensional)

variables, this equation can be written
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cpc~ ~ ~p~g/cx 3  O (1.38)

Since we are neglecting the transverse pressure variation, and con-

sequently the transverse density variation, integration of Eq. (1. 38)

across the film yields

it gj X + Va ) (1. 39)

However,

A'I ' -• - + -P ,; (1I .4 0o)

so that

Olt Yz f (1.41)

In view of the kinematic conditions (1.4) and (1. 5), Eq. (1.41)

becomes

S=~h - .p (1.42)

If we again neglect the density variation across the film, Eq. (1. 42)

becomes, in terms of the dimensionless variables,

Or___ (iH) + 1 3

(1+ O/l 3) T cX.L3
/,/
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Integrating Eq. (1. 36) across the film yields

A,(/8+,./j/) - ;z--- y (1.44)

Substituting Eq. (1.44) into Eq. (1.43) yields

-a-- (H37r ->)= R. IL + RI (1.45)

where

and

is Z~ + Tr[w (zP(~'(~ d ]
7i 7-

/• (1.47)

We note that, if H, Ui and Ui' are specified functions of Xi and

T, the dimensionless pressure P'is the only dependent variable

appearing on the left side of Eq. (1.45). Consequently, if conditions

are such that the right side can be neglected, we obtain a single

partial differential equation for the pressure in an isothermal gas
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film: a generalized Reynolds equation.

The right side of Eq. (1.45) is comprised of terms arising from

the inertia terms in the Navier-Stokes equation. The inertia factors,

defined by Eqs. (1.46) and (1.47), involve the dependent variables It,

Ui and w, and hence cannot be specified a priori. However, the

various dimensionless quantities have been defined in such a way that,

under normal circumstances, Is and IL are of unit order. Thus, the

significance of the right side of Eq. (1. 45) is measured solely by the

modified Reynolds numbers RS and RL. If they are very small com-

pared with unity, Eq. (1. 45) reduces to (1.48)

ýAX, JX4 (I+ V/ W1) ýT (i+ .8V) x L
or, in terms of the original variables,

Thus, when fluid inertia and dilatlonal stresses are negligible,

the pressure in a thin, isothermal gas film is governed by a nonlinear

partial differential equation in three independent variables. In some

problems of practical importance, p is the only dependent variable:

h, Vi, and Vi are specified functions of xi and t. In other cases, some

or all of the quantities h, Vi, V! are themselves dependent variables,

so that the Reynolds equation (1. 49) is coupled to other equations
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describing the dynamics of the bearing system.

Even if fluid inertia cannot be completely neglected, it may be

possible to account for its effect, at least approximately, if the modi-

fied Reynolds numbers RS and RL are not too large. Estimates of

the inertia factors IS and IL, based on some reasonable assumption

for the velocity profile, can and have been used[4]. Equation (1.47)

thus becomes a partial differential equation with the dimensionless

pressure as the only dependent variable, instead of an integro-

differential equation in four depeadent variables.

II. THE SQUEEZE-FILM EQUATION

In deriving the Reynolds equation (1. 49), we found it convenient

to introduce the dimensionless pressure 7r, defined by Eq. (1. 24),

since this quantity is normally of order unity in the interior of the

gas film. In this section, however, we are concerned with the Impli-

cations of Eq. (1. 49) rather than with its derivation. Since the load-

bearing ability of a gas film is measured by the gage pressure in its
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interior, it is useful to normalize the pressure with respect to the

ambient pressure. The Reynolds equation then becomes

PH (ULJ"'- + a- YX A eI.i ~ 4 ~ ./ 2 1
where the dimensionless parameters/A (the bearing number) and O-

(the squeeze number) are defined by

(2.2)

'Iul., A(2.3)
If Ui, Uj, and H are specified functions of Xi and T, Eq. (2. 1)

is a quasilinear parabolic differential equation in one dependent and

three independent variables.

Spatial symmetries can sometimes be used to eliminate one of

the independent variables. The simplest example of this procedure

occurs when the gas film is infinitely long in the X direction and H

is independent of X 2 . Omitting the subscripts from U., U1 and X,

we reduce Eq. (2. 1) to

ax 
(2, '4) T

It is sometimes possible to take advantage of a spatial symmetry

by introducing a curvilinear coordinate system Y' Equation (2. 1) then

becomes
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A S

where Uti and Ui71 denote the contravariant components of the lateral

surface motion, Cý denote the components of the contravariant metric,

and /CPare the Cristoffel symbols of the second kind.

The most widely used curvilinear coordinate system is the polar

system

( . /X) (2.6)

for which Eq. (2. 5) reduces to_k RH-'P a P)+-L --•q (Hapmý P• )
A aU,+ ýP oU

(2.7)

in which URI UA, UTjq 19 denote the physical components of surface

motion. In the important case of axially symmetric motion, we obtain

) P (PH)

when the bearing surfaces are rigid, theA -term vanishes.



The character of solutions to Eq. (2. 1), and its equivalents (2. 5),

(2. 7), is determined by the magnitudes of A andO". In the remain-

der of this paper, we consider the special case of zero bearing number.

Thus, we focus our attention on the squeeze-film equation

'ap a (PH)
Pýýx = 6" ý >(2.9)

which governs the film pressure in the absence of lateral surface

motion, and upon its axisymmetric equivalent

R__ ( H3p a-() - H (2. 10)

For infinitely long films, Eq. (2. 9) reduces to the one-dimensional

squeeze-film equation

SaP (P)(2.11)
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III. EXACT SOLUTION TO THE SQUEEZE-FILM EQUATION

Since the squeeze-film equation (2.4) is, in general, a nonlinear

parabolic equation with variable coefficients, present day analytical

methods can be expected to provide exact solutions only in the most

degenerate cases. Fortunately, one of these cases is of engineering

interest: Externally pressurized films, under steady conditions, are

governed by Eq. (2. 9) with the squeeze numbero-- set equal to zero:

a( H SOP) .(3.1)

On source-free segments of the bearing periphery, the pressure is

ambient; at supply holes, it equals the inlet pressure.

Equation (3. 1) can be rewritten

-[b- F9] 0* (3.2)

Since Eq. (3. 2) is linear in PZ - it is obtained from the equation for

incompressible externally pressurized films simply by replacing P

with 2 _it can often be solved by straightforward methods. In

particular, if the externally pressurized bearing consists of parallel
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flat plates, so that H is constant, Eq. (3. 2) reduces to

& . "X =(3.3)

and the methods of potential theory become available. Because of

the widespread use of externally pressurized gas bearings, many

theoretical investigations of their properties have appeared in the

literature.

We now return to Eq. (2. 9) with a nonvanishing right side. This

is, in essence, a nonlinear heat equation, the analogy with heat flow

being more evident if we think of P2 as the dependent variable. This

suggests that useful results might be found in Crank's extensive treatise

[5-. On page 162, C"ank deBcribes an analysis due to Wagner L6] which

leads us to an exact solution to Eq. (2. 9). Wagner considered diffusion

of a solute into a semi-infinite medium, with the diffusivity propor-

tional to the concentration, the surface concentration held constant,

and the initial concentration equal to zero.

The squeeze-film analog of Wagner's problem is the determination

of the pressure field between parallel plates, originally in intimate

contact, then suddenly pulled apart. Actually, we can generalize the

solution to include an arbitrary step-function change in the gap between
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semi-infinite parallel plates. Strictly speaking, this problem is out-

side the scope of squeeze-film theory as reported in this paper

because, at the initial instant, dilational stresses and inertia are

surely important, and the caloric behavior of tile film is probably

nearer adiabatic than isothermal (if, indeed, these thermostatic

concepts have any meaning at all). It can be hoped, however, that

squeeze-film theory provides an accurate picture once the first few

instants of time have passed.

We assume that the projection of the gas film on the XI -X 2 plane

occupies the half-plane X >0. Since no bearing breadth can be defined,

we normalize all spatial variables with respect to the final gap ho.

We suppose that, at time zero, the gap is suddenly changed fromoAho

to ho, then held at the new value. Thus,

(3.4)

We use the lower case t, denoting actual time: since there is no

characteristic frequency, the time variable cannot be normalized.

For positive values of t, the normalized pressure P is governed by
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,)x - I•t s(3.5)

where 0--* is a characteristic time, defined by

cr*::~ '*/w.(3.6)
Corresponding to the discontinuous change in gap at t 0 there

is a discontinuous change in the gas pressure. With the isothermal

conditions postulated, Boyle's law requires that

Q'C× + 0 )- = K (3.7)

Since the pressure is ambient at the bearing edge)

pki)-(3.9)
Equation (3.5), subject to the initial condition (3. 7) and to the

boundary conditions (3. 8), (3. 9), admits of the self-similar solution

~(jý=/( X o¼),(3. 10)

where the function f(y) is determined by the ordinary differential

equation

"4- (3. 11)



- 26 -

subject to the boundary conditions

Numerical integration of Eq. (3. 11) subject to the boundary con-

ditions (3. L?) yields the family of curves illustrated in Fig. 3. 1. As

Sbecomes 
arbitrarily small, the solution tends uniformly to the

curve for o4 = 0 (plates initially in contact). This limiting solution

joins the y-axis at about y = 0.81, illustrating the curious fact,

observed by Wagner L6], that Eq. (3. 5) - although parabolic -

admits of a solution with a well-defined wave front. Needless to say,
the basic assumptions of squeeze-film theory cannot hold true for such

an extreme case.
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IV. LIMITING FORMS OF THE SQUEEZE-FILM EQUATION

We began the previous section by considering externally pres-

surized films at zero squeeze number. Nontrivial solutions result

only because of the boundary conditions: The pressure at supply holes

differs from the ambient pressure at source-free segments of the

boundary. Were this not so, the pressure would be ambient every-

where in the film, as is physically evident.

When the squeeze number is finite but small, we expect that the

pressure in a self-acting squeeze film (no external pressurization)

will not differ much from ambient: Small squeeze number corresponds

to low frequency, so that the bearing has time to "leak." Thus, with

a- as a perturbation parameter,

e-l+ crAF pA) (4.1)

The squeeze-film equation (2. 9) then becomes:

Sa_(H 4- ar [P ]

H +- T (4.2)

Collecting equal powers of r-" yields

_a_ (H(4a3)Xh L '
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(4.4)

Since the pressure is ambient at the bearing periphery, all the p(n)

must vanish there.

It is of interest to let

I+-P = ir (4.5)

so that, with Eq. (4. 1),

FT oor'+ ) . (4.6)

The boundary conditions require that 7T be unity on the bearing

periphery, and Eq. (4. 3) implies that

This is the incompressible squeeze-film equation, for which many

solutions are available [lj . Thus, with neglect only of terms of the

second degree or higher in the squeeze number, an isothermal gas

film can be considered incompressible. Physically, at low squeeze

numbers the gas leaks out before it is significantly compressed or

rarefied.

At very large squeeze number, on the other hand, the gas exhibits
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almost no tendency to leak. When the frequency of the squeeze motion

is sufficiently high, the escape of the gas is effectively blocked by its

own viscosity: The bearing tends to behave like a bellows. We use

the perturbation parameter a- 4.and note that, as the squeeze number

becomes indefinitely large, Eq. (2. 9) tends to the limiting form

J(PH)/dT-- 0. (4.8)

There is obviously something wrong with this equation: It predicts

that the product PH is a function of the spatial variables only, which

leaves no way to satisfy the boundary conditions on the bearing peri-

phery. For example, if

1I 17-1-0
S (T) Do, -(0) (4. 9)

so that

P(Xi, 0) =I ,(4.10)

Eq. (4.8) predicts that the pressure satisfies Boyle's law:
P x T)= (7Z 0) (.1

throughout the interior of the film. Thus, the pressure must drop

(or jump) discontinuously to ambient at the bearing periphery. Since

Eq. (4. 8) is derived from Eq. (2. 9) simply by setting d- = 0, so that

the bearing is precisely a bellows, it. might be hoped that the next

order of approximation predicts a continuous pressure leakage at the
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periphery, but this is not the case. If we set

=(.T '/ý CT) -+ ,-'-rl- (XzT), (4. 12)

substitute Eqs. (4. 9) and (4. 12) into Eq. (2. 9), and neglect terms of

-1
the second degree and higher inc- , we obtain

3 1: Ž l (4.13)

with the same difficulties as before.

The problem, of course, is that perturbation on 0- is a singular

perturbation: Eliminating the term involving0- from Eq. (Z. 9)

reduces its order. It would seem, then, that the pressure does indeed

obey Boyle's law, except that in narrow boundary layers near the peri-

phery, it changes steeply but continuously to ambient. Even this con-

cept must be treated cautiously, however, for the bearing leakage is

a continuing process: The boundary layers tend to diffuse away, as

illustrated in Sec. IV by the exact solution for the semi-infinite film.

Mathematically, the problem is twofold. First, passing from

Eq. (2. 9) to Eq. (4. 8) involves, as far as spatial derivatives are con-

cerned, a drop in order of 2, not 1. Also, in (XI, XZ, T) space, the

boundary layers run parallel to the characteristics of the reduced

-equation. Both difficulties tend to obstruct a singular perturbation

approach. The problem invites attention.
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V. SMALL, PERIODIC VARIATION OF THE GAP BETWEEN

INFINITELY LONG PARALLEL PLATES

Consider an infinitely long bearing of uniform width B. We can

choose a Cartesian coordinate system so that the projection of this

bearing on the x 3 = 0 plane is

The one-dimensional squeeze-film equation (2. 11) is then applicable.

Assume that the surfaces of the bearing are parallel plates and

that the gap between them varies according to

k = hK (Its &aawt)., (5,.Z)

where the constant S is small compared with unity. We then expect

that the deviation of pressure from ambient will be of order

Thus,

t7Q) r~Q*S~f-- a hJ.(5. 3)

We now substitute Eqs. (5.2) and (5.3) into Eq. (2. 11) and neglect

terms of the second degree or higher in c . In terms of the normalized

variables, we obtain

SL(5.4)
AýT
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Since the pressure is ambient at the bearing edges,

7 (t Y•, T)- . (5. 5)

We seek a steady-state solution to Eq. (5. 4) subject to Eq. (5. 5)

by assuming

7r(xT)= 7(r), DT+ Vr x),a,,7- (5.6)

Substituting into Eq. (5. 4), we obtain

7T,~• -,&VT=(-.1) 1" 7 -. 7)

If this equation is to hold for all values of T, both sides must

vanish identically. Similarly, the boundary conditions expressed by

Eq. (5.5) are satisfied if and only if both and lkvanish at

X = +1/2. Thus 7and 7T are determined by the pair of differen-

tial equations

/7 , 7r O, (5 . 8 )

( 5.9)
dl

subject to

+ = " .(5.10)

A variety of elementary methods exist for solving this system.

The route entailing the least manipulation probably results from com-

bining (5.8) and (5. 9) into one second order equation for the complex
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variable (Jr - ). Carrying out the details leads us to

(5. 11)

(5. 12)

where

FIX (5.13)

The squeeze-film force is given by

F f(P- )d.X (5. 14)

where, at any specific time, the magnitude of F is the average loading

pressure (gage) in atmospheres. Thus, with Eqs. (5. 3) and (5.6),

F1/S- - fil T ,(x),ý Xt•v;, TJ f (xx• (5. 15)
101 -//1

With (5.11) and (5. 12),

FIE J, (a-) C , 7+/ -, - (5. 16)

where

.4u, +•Z +- •U* .
S(5,- .17. -
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toaArvI/,z+ aw Fd1-1(5.18)

Equivalently,

FIJ A(e) ow [+ (V(5. 19)

where

A (520)

(- a~f~l£)( . €(5.21)

For small values ofoa- , the in-phase and out-of-phase compon-

ents of the force are given by

..,(0r) -Y-/I;c +.., (5. 22)

4(,,): cr'/, 4- ,,, (5.23)

Thus, the amplitude of F/Jo for small o- is very nearly equal to

f2 (d) and the force leads the motion by nearly 900.

For very largeo-

f,(•)-, - -", (5. 24)

YZ 1- 7ý:-(5.2Z5)

so that the force and the motion are almost in phase.

Figure 5.1 illustrates the force-frequency curve in the range

where the most significant behavior is observed; the solution for an



-35-

LiJz

Z 

Li

8a 
0

C)LL Z vi
00 LO
1. 6 o.

~ q- -C" vi

U 0.

N -
0~ 

tr

m LOO

00

LQL0

C-)

3S2



-36-

incompressible film is included. Figure 5. 2 illustrates the force-

frequency curve over the full range.

VI. SMALL, PERIODIC VARIATION OF THE GAP
BETWEEN PARALLEL DISKS

We now turn our attention to the squeeze film between two paral-

lel, coaxial disks of radius B. It is clearly most convenient to use the

polar coordinate system introduced in Sec. II. The projection of the

bearing on the X3 = 0 plane is

(6. 1)

Because of the axial symmetry, the pressure between the plates

is governed by the form of the squeeze-film equation given in Eq. (2. 10),

subject to the boundary condition

P(I'T)- (6. 2)

and to the restriction

P (0,-T) finite. (6.3)

We note in passing that the pressure is governed by this same

equation and these same boundary conditions when either or both of
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the disks rotate about their rautual axis. This can be seen from Eq.

(2. 8): For such rotation, steady or time-dependent, UR and UR

vanish. Because of this fact, the solution to Eqs. (2. 10), (6.2) and

(6.3) for small, sinusoidal variation of H has already appeared in the

literature. At the Ninth International Congress of Applied Mechanics

(Brussels) 1956, Professor M. Reiner of the Israel Institute of Tech-

nology demonstrated an instrument for measuring the non-Newtonian

properties of air. A disk 6. 7 cm in diameter was spun at 7, 000 rpm

opposite a fixed stator disk 0. 02 mm away. A manometer connected

to a 4-mm hole in the center of the stator recorded pressures which

differed qualitatively from the predictions of Newtonian flow theory.

Taylor and Saffman C71 investigated the possible effects of engineering

imperfections in Reiner's instrument. They calculated the pressure

perturbation which would result if the disks were not quite parallel,

or if they were vibrating, so that the gap between them varied sinu-

soldally with time.

If the gap between the disks varies according to

/l=lq. 0i+ s •wwt)" (6.4)

we expect that

We now substitute Eqs. (6.4) and (6.5) into Eq. (2. 10), neglecting
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the terms of the second degree or-higher in ý, and obtain

Taylor and Saffman L7] showed that a periodic solution to Eq. (6. 6),

subject to Eqs. (5. 2) and (5.3), is provided by

where

+ (k~~)L- j(6.8)

and*

The net force W acting to keep the disks apart is given by

W if ,•z• )OL (•- R ( 6. 1O)

0

From Eqs. (6. 5) and (6. 7),

(6. Ii)

W'= Wltr62 ;z ew
A misprint occurs in the Taylor and Saffman paper at this point.

The second of their equations (15), which corresponds to our Eq. (6. 9),

should have one side or the other multiplied by --I.
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To evaluate the integrals appearing in Eq. (6.11), we make use

of certain identities involving Bessel functions, summarized here for

convenience:

x

Of dx

0

~~' J(1%~ (6. 14)

£~ j~()(6. 15)

Eqs. (6. 17) and (6. 18), which are the ones of interest to us, are

derivable from Eqs. (6.12) to (6. 16).

With Eqs. (6. 8) and (6.9), Eq. (6. 11) becomes

/a -Tc -r +$ Y.), 60 T, f6. 19)
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where

(6.21l)

Equivalently,

W/S T +(6. 22)

where

4' f (6. 23)

a44r~ln,(6.24)

The behavior of gl and g 2 for small values of O"can be ascertained

with the help of Eqs. (6. 14) and (6. 16), together with Maclaurin series

Z,) /- + ) b( 31J2 + "' (6.25)

~: [' ~J7 ~ - ... (6-26)

By setting z i we obtain

I
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z + ; , (6.27)-2_ + 0 (-x") -8

g -2L + 0(77) (6.29)

;z.L r• C, ( I-Z •', (6.30)

Equations (6. 20) and (6. 21) then give us

dllq?+. ''(6. 31)

r /' + -- -(6. 32)

To investigate the behavior of g, and g 2 for large values of cr,

we employ the asymptotic formulas

J -Y -.7i , }7r. (6.33

With Eqs. (6. 14) and (6. 16), we find, after some lengthy but

straightforward calculations,

(21T X) e X 11;Z ) (6. 34)

- 1" , r -Tf/ (6.36)

. ' it e e ( -7•F- ). (6.37)

Equations (6.20) and (6. 21) then yield, for largeo- ,
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, ) -• - - " (6.38)

€. &r) . 2-. {•(6. 39)

It is not surprising that, as g- approaches infinity, so thiat the

effect of leakage becomes less and less, the bearing force has the same

functional form for the circular disks as it did for the infinitely long

bearing. That the coefficients agree is coincidence: If, for the breadth

B, we were to select the disk diameter instead of the radius, Eqs. (6. 38)

and (6.39) would undergo an obvious modification.

j
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